Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2246801

ABSTRACT

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Antibodies, Viral
2.
Cell Host Microbe ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2240051

ABSTRACT

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.

3.
Clin Infect Dis ; 75(Supplement_4): S530-S540, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2134999

ABSTRACT

Broadly neutralizing antibodies directed against human immunodeficiency virus (HIV) offer promise as long-acting agents for prevention and treatment of HIV. Progress and challenges are discussed. Lessons may be learned from the development of monoclonal antibodies to treat and prevent COVID-19.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , HIV Infections , HIV-1 , Humans , HIV Antibodies , Antibodies, Monoclonal/therapeutic use
5.
Cell Rep ; 38(11): 110514, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1739598

ABSTRACT

The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared with trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated. Here, we show that mRNAs can encode antigenic Env trimers on ferritin nanoparticles that initiate bnAb precursor B cell expansion and induce serum autologous tier 2 neutralizing activity in bnAb precursor VH + VL knock-in mice. Next-generation sequencing demonstrates acquisition of critical mutations, and monoclonal antibodies that neutralize heterologous HIV-1 isolates are isolated. Thus, mRNA-LNP can encode complex immunogens and may be of use in design of germline-targeting and sequential boosting immunogens for HIV-1 vaccine development.


Subject(s)
AIDS Vaccines , COVID-19 , HIV-1 , Nanoparticles , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19 Vaccines , Epitopes , Ferritins/genetics , HIV Antibodies , Humans , Liposomes , Mice , RNA, Messenger , env Gene Products, Human Immunodeficiency Virus/genetics
6.
Proc Natl Acad Sci U S A ; 119(11): e2122954119, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1721790

ABSTRACT

SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/pharmacology , COVID-19 Vaccines/immunology , Complementarity Determining Regions , Deep Learning , Epitopes/immunology , Humans , Immunotherapy/methods , Neutralization Tests/methods , Protein Domains , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
7.
J Struct Biol ; 214(1): 107839, 2022 03.
Article in English | MEDLINE | ID: covidwho-1668920

ABSTRACT

The antigenic epitope regions of pathogens (e.g., viruses) are recognized by antibodies (Abs) and subsequently cleared by the host immune system, thereby protecting us from disease. Some of these epitopes are conserved among different variants or subgroups of pathogens (e.g., Influenza (FLU) viruses, Coronaviruses), hence can be targeted for potential broad-neutralization. Here we report a web-based tool, Epitope Analyzer (EA), that rapidly identifies conformational epitope and paratope residues in an antigen-antibody complex structure. Furthermore, the tool provides the ways and means to analyze broadly neutralizing epitopes by comparing the equivalent epitope residues in similar antigen structures. The similarity in the epitope residues between (multiple) pairs of similar antigen molecules suggest the presence of conserved epitopes that can be targeted by broadly neutralizing antibodies. These details can be used as a guide in developing effective treatments, such as the design of novel vaccines and formulation of cocktail of broadly neutralizing antibodies, against multiple variants or subgroups of viruses. The web application can be freely accessed from the URL, http://viperdb.scripps.edu/ea.php.


Subject(s)
Antibodies, Neutralizing , Influenza, Human , Broadly Neutralizing Antibodies , Epitopes/chemistry , Humans
8.
Cell Host Microbe ; 30(1): 69-82.e10, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1638702

ABSTRACT

A fraction of COVID-19 convalescent individuals mount a potent antibody response to SARS-CoV-2 with cross-reactivity to SARS-CoV-1. To uncover their humoral response in detail, we performed single B cell analysis from 10 SARS-CoV-2 elite neutralizers. We isolated and analyzed 126 monoclonal antibodies, many of which were sarbecovirus cross-reactive, with some displaying merbecovirus- and embecovirus-reactivity. Several isolated broadly neutralizing antibodies were effective against B.1.1.7, B.1.351, B.1.429, B.1.617, and B.1.617.2 variants and 19 prominent potential escape sites. Furthermore, assembly of 716,806 SARS-CoV-2 sequences predicted emerging escape variants, which were also effectively neutralized. One of these broadly neutralizing potent antibodies, R40-1G8, is a IGHV3-53 RBD-class-1 antibody. Remarkably, cryo-EM analysis revealed that R40-1G8 has a flexible binding mode, targeting both "up" and "down" conformations of the RBD. Given the threat of emerging SARS-CoV-2 variants, we demonstrate that elite neutralizers are a valuable source for isolating ultrapotent antibody candidates to prevent and treat SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Cross Reactions/immunology , Female , HEK293 Cells , Humans , Male , Middle Aged , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
9.
Front Bioeng Biotechnol ; 9: 637715, 2021.
Article in English | MEDLINE | ID: covidwho-1572280

ABSTRACT

In time of COVID-19 biological detection technologies are of crucial relevance. We propose here the use of state of the art optical fiber biosensors to address two aspects of the fight against SARS-CoV-2 and other pandemic human coronaviruses (HCoVs). Fiber optic biosensors functionalized with HCoV spikes could be used to discover broadly neutralizing antibodies (bnAbs) effective against known HCoVs (SARS-CoV, MERS-CoV and SARS-CoV-2) and likely future ones. In turn, identified bnAbs, once immobilized onto fiber optic biosensors, should be capable to detect HCoVs as diagnostic and environmental sensing devices. The therapeutic and preventative value of bnAbs is immense as they can be used for passive immunization and for the educated development of a universal vaccine (active immunization). Hence, HCoV bnAbs represent an extremely important resource for future preparedness against coronavirus-borne pandemics. Furthermore, the assembly of bnAb-based biosensors constitutes an innovative approach to counteract public health threats, as it bears diagnostic competence additional to environmental detection of a range of pandemic strains. This concept can be extended to different pandemic viruses, as well as bio-warfare threats that entail existing, emerging and extinct viruses (e.g., the smallpox-causing Variola virus). We report here the forefront fiber optic biosensor technology that could be implemented to achieve these aims.

10.
AIDS Res Hum Retroviruses ; 38(5): 350-358, 2022 05.
Article in English | MEDLINE | ID: covidwho-1486408

ABSTRACT

The HIV Research for Prevention (HIVR4P) conference catalyzes knowledge sharing on biomedical HIV prevention interventions such as HIV vaccines, antibody infusions, pre-exposure prophylaxis, and microbicides in totality-from the molecular details and delivery formulations to the behavioral, social, and structural underpinnings. HIVR4P // Virtual was held over the course of 2 weeks on January 27-28 and February 3-4, 2021 as the coronavirus disease 2019 (COVID-19) pandemic continued to inflict unprecedented harm globally. The HIVR4P community came together with 1,802 researchers, care providers, policymakers, implementers, and advocates from 92 countries whose expertise spanned the breadth of the HIV prevention pipeline from preclinical to implementation. The program included 113 oral and 266 poster presentations. This article presents a brief summary of the conference highlights. Complete abstracts, webcasts, and daily rapporteur summaries may be found on the conference website (https://www.hivr4p.org/).


Subject(s)
AIDS Vaccines , Anti-HIV Agents , COVID-19 , HIV Infections , Pre-Exposure Prophylaxis , Anti-HIV Agents/therapeutic use , COVID-19/prevention & control , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , Health Services Research , Humans
11.
Vaccines (Basel) ; 9(8)2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-1360834

ABSTRACT

To identify the most efficient methods of immunological protection against SARS-CoV-2, including the currently most widespread variants of concern (VOCs)-B.1.1.7, B.1.351 and P.1-a simultaneous side-by-side-comparison of available vaccination regimes is required. In this observational cohort study, we compared immunological responses in 144 individuals vaccinated with the mRNA vaccines BNT162b2 or mRNA-1273 and the vector vaccine ChAdOx1-nCoV-19, either alone, in combination, or in the context of COVID-19-convalescence. Unvaccinated COVID-19-convalescent subjects served as a reference. We found that cellular and serological immune responses, including neutralizing capacity against VOCs, were significantly stronger with mRNA vaccines as compared with COVID-19-convalescent individuals or vaccinated individuals receiving the vector vaccine ChAdOx1-nCoV-19. Booster immunizations with mRNA vaccines triggered strong and broadly neutralizing antibody and IFN-γ responses in 100% of vaccinated individuals investigated. This effect was particularly strong in COVID-19-convalescent and ChAdOx1-nCoV-19-primed individuals, who were characterized by comparably moderate cellular and neutralizing antibody responses before mRNA vaccine booster. Heterologous vaccination regimes and convalescent booster regimes using mRNA vaccines may allow enhanced protection against SARS-CoV-2, including current VOCs. Furthermore, such regimes may facilitate rapid (re-)qualification of convalescent plasma donors with high titers of broadly neutralizing antibodies.

12.
Vaccines (Basel) ; 9(7)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1287280

ABSTRACT

The generation of high affinity antibodies is a crucial aspect of immunity induced by vaccination or infection. Investigation into the B cells that produce these antibodies grants key insights into the effectiveness of novel immunogens to induce a lasting protective response against endemic or pandemic pathogens, such as influenza viruses, human immunodeficiency virus, or severe acute respiratory syndrome coronavirus-2. However, humoral immunity has largely been studied at the serological level, limiting our knowledge on the specificity and function of B cells recruited to respond to pathogens. In this review, we cover a number of recent innovations in the field that have increased our ability to connect B cell function to the B cell repertoire and antigen specificity. Moreover, we will highlight recent advances in the development of both ex vivo and in vivo models to study human B cell responses. Together, the technologies highlighted in this review can be used to help design and validate new vaccine designs and platforms.

13.
J Int AIDS Soc ; 24(5): e25749, 2021 05.
Article in English | MEDLINE | ID: covidwho-1245444
14.
Viruses ; 13(4)2021 03 24.
Article in English | MEDLINE | ID: covidwho-1231504

ABSTRACT

Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.


Subject(s)
Adjuvants, Immunologic , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Animals , Antibodies, Viral/immunology , Clinical Trials as Topic , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunity, Humoral , Influenza Vaccines/genetics , Influenza, Human/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Vaccines, Virus-Like Particle/immunology
15.
Front Mol Biosci ; 7: 226, 2020.
Article in English | MEDLINE | ID: covidwho-832483

ABSTRACT

Learning from the lengthy fight against HIV-1, influenza, and Ebola virus infection, broadly neutralizing antibodies (bnAbs), directed at conserved regions of surface proteins crucial to virus entry (Env, hemagglutinin, and GP, respectively), are an essential resource for passive as well as active immunization. Rare in their emergence and antigen recognition mode, bnAbs are active toward a large set of different viral strains. Isolation, characterization and production of bnAbs lead to their possible use in passive immunotherapy and form the basis for an educated effort in the development of vaccines for universal coverage. SARS-CoV-2-specific antibodies targeting the spike receptor binding domain (RBD) may lead to antibody dependent enhancement (ADE) of infection, possibly hampering the field of vaccine development. This perspective points to the identification of conserved regions in the spike of SARS-CoV-2, SARS-CoV, and MERS-CoV through investigation, dissection and recombinant production of isolated moieties. These spike moieties should be capable of independent folding and allow the detection as well as the elicitation of bnAbs, thus setting the basis for an effective passive immunotherapy and the development of a universal vaccine against human epidemic coronaviruses (HCoVs). SARS, MERS and, most of all, COVID-19 demonstrate that humanity is the target of HCoV, preparedness for future hits is thus no longer an option.

SELECTION OF CITATIONS
SEARCH DETAIL